Topic 1 What is a differential equation?

Def:

 An equation relating an unknown function and one or more of its derivatives is called a <u>differential</u> equation (DE). • If the unknown function depends on only a single independent variable then the equation is called an ordinary differential equation (ODE) · If the unknown function depends on two or more vaniables and contains pontial derivatives then the equation is called a partial differential equation (PDE) • The order of a differential equation is the order of the highest derivative that appears in it.

$$\frac{dy}{dx} = y^2$$

$$4x^2y'' + y = 0$$

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

Def: An ODE is called linear if it is of the firm $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_n(x)y' + a_n(x)y = b(x)$ That is, the coefficient's of the y^(K) terms only have x's and constants in them

Ex: a linear $x'y'' - 2y' + \ln(x)y = 5x$ only has x's and constants -(non -(lînea $y'_{,y}' - 5y' + 12xy = 0$ K (has y as coefficient)

Def: The real number line is denoted by IK. Def: An open interval I is an internal of the form (HHH)I = (a, b) <T (HIIIIII) -b or I=(-10,6) < or $I = (a, \infty) \leqslant$ $\begin{array}{c} \mp R \\ \leftarrow (HHHHH) \\ a \end{array}$ $0 r I = R = (-\infty, \infty)$ Ettelling)

(2) We must show that

$$f'(x) - f(x) = 0$$
 is true for
 $a|| x in I$.
 $a|| x in I$.
 $f_{r} = 0$ is true since $e^{x} - e^{x} = 0$
This is true since $e^{x} - e^{x} = 0$
 $f_{r} = 0$ If $x = 0$ in I.

ODE EX: Consider the y'' - 4y = 0 ce^{2x} Let's try to find a Solution on I=(-20,00). Let $f(x) = c e^{2x}$ where c is a constant. $f(x) = c e^{2x}$ defined Then, cezx for all x, ie $f'(x) = 2ce^{2x}$ $T = (-\infty,\infty)$ $f''(x) = 4c e^{2x}$ We must show that $f''(x) - \mathcal{Y}f(x) = 0$ for all x in $T = (-\infty, \infty)$

This is true since
$$4ce^{2x} + 4ce^{2x} = 0$$

for all x in I.
Thus, we have found an infinite
Number of colutions to $y'' - 4y = 0$,
one for each constant c.
Some examples are $5e^{2x} + 10e^{2x} - 17e^{2x}$.
What if we were asked to
find a solution to the initial
value problem:
 $y'(0) = 5$
 $y'(0) = 10$
A solution to this problem
is $f(x) = 5e^{2x} + 10e^{2x} = 5e^{2(0)} = 5e^{2(0)} = 5e^{2(0)} = 10e^{2(0)} = 10e^{2(0$

Ex: Consider the non-linear first order Obt

$$\frac{dy}{dx} = y^{2} \quad (*)$$
Let $\phi(x) = \frac{1}{C-x}$
where C is a
constant.
Then,
 $\phi'(x) = ((C-x)^{-1})' = -(C-x)^{-2}(-1) = \frac{1}{(C-x)^{2}}$
 $(\phi(x))^{2} = (\frac{1}{C-x})^{2} = \frac{1}{(C-x)^{2}}$
 $(\phi(x))^{2} = (\frac{1}{C-x})^{2} = \frac{1}{(C-x)^{2}}$
Thus, plugging ϕ in for y and ϕ' in
Thus, plugging ϕ in for y and ϕ' in
Thus, plugging ϕ in for y and ϕ' in
Thus, plugging ϕ in for y and ϕ' in
Thus, plugging ϕ in for y and ϕ' in
Thus, plugging ϕ in for y and ϕ' in
Thus, plugging ϕ in for y and ϕ' in
Thus, $\phi(x) = \frac{1}{(C-x)^{2}}$
That is, $\phi(x) = \frac{1}{C-x}$ satisfies (*).

Note that \$(x) and \$'(x) only exist for X = C. Thus, for example, $\phi(x) = \frac{1}{C-x}$ is a solution to (*) on the interval $I=(-\omega, C)$.

You could also say that ϕ is a solution to (4) on $I = (C, \infty)$.

Ex: Solve
$\frac{dy}{dx} = y^2 \qquad (xx)$
where $y(0) = 1$.
We know that $\phi(x) = \overline{C-x}$ solves $\frac{dy}{dx} = y^2$ for $x \neq C$.
Let's try to solve $\phi(0) = 1$. We get $\frac{1}{C-0} = 1$ which gives $C = 1$.
Thus, $\phi(x) = 1 - x$ \int_{1}^{1}
Solves (kk) On the interval $T = (-\infty, 1)$ p(x) = 1 - x p(x) = 1 - x
\checkmark 1